Silencing of the Mitochondrial Ascorbate Synthesizing Enzyme l-Galactono-1,4-Lactone Dehydrogenase Affects Plant and Fruit Development in Tomato

Author:

Alhagdow Moftah1,Mounet Fabien1,Gilbert Louise1,Nunes-Nesi Adriano1,Garcia Virginie1,Just Daniel1,Petit Johann1,Beauvoit Bertrand1,Fernie Alisdair R.1,Rothan Christophe1,Baldet Pierre1

Affiliation:

1. Institut National de la Recherche Agronomique, Université Bordeaux 1, Université Victor Ségalen-Bordeaux 2, Institut Fédératif de Recherche 103, Unité Mixte de Recherche 619 sur la Biologie du Fruit, Centre de Recherche Institut National de la Recherche Agronomique de Bordeaux, BP 81, 33883 Villenave d'Ornon cedex, France (M.A., F.M., L.G., V.G., D.J., J.P., B.B., C.R., P.B.); and Max-Planc

Abstract

Abstract l-Galactono-1,4-lactone dehydrogenase (EC 1.3.2.3) catalyzes the last step in the main pathway of vitamin C (l-ascorbic acid) biosynthesis in higher plants. In this study, we first characterized the spatial and temporal expression of SlGalLDH in several organs of tomato (Solanum lycopersicum) plants in parallel with the ascorbate content. P35S:SlgalldhRNAi silenced transgenic tomato lines were then generated using an RNAi strategy to evaluate the effect of any resulting modification of the ascorbate pool on plant and fruit development. In all P35S:SlgalldhRNAi plants with reduced SlGalLDH transcript and activity, plant growth rate was decreased. Plants displaying the most severe effects (dwarf plants with no fruit) were excluded from further analysis. The most affected lines studied exhibited up to an 80% reduction in SlGalLDH activity and showed a strong reduction in leaf and fruit size, mainly as a consequence of reduced cell expansion. This was accompanied by significant changes in mitochondrial function and altered ascorbate redox state despite the fact that the total ascorbate content remained unchanged. By using a combination of transcriptomic and metabolomic approaches, we further demonstrated that several primary, like the tricarboxylic acid cycle, as well as secondary metabolic pathways related to stress response were modified in leaves and fruit of P35S:SlgalldhRNAi plants. When taken together, this work confirms the complexity of ascorbate regulation and its link with plant metabolism. Moreover, it strongly suggests that, in addition to ascorbate synthesis, GalLDH could play an important role in the regulation of cell growth-related processes in plants.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 168 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3