Flavonoids Are Differentially Taken Up and Transported Long Distances in Arabidopsis

Author:

Buer Charles S.1,Muday Gloria K.1,Djordjevic Michael A.1

Affiliation:

1. Genomic Interactions Group, Australian Research Council Centre of Excellence for Integrative Legume Research, Research School of Biological Sciences, The Australian National University, Canberra, Australian Capital Territory 0200, Australia (C.S.B., M.A.D.); and Biology Department, Wake Forest University, Winston-Salem, North Carolina 27109 (G.K.M.)

Abstract

Abstract Flavonoids are synthesized in response to developmental and environmental signals and perform many functions in plants. Arabidopsis (Arabidopsis thaliana) roots grown in complete darkness do not accumulate flavonoids since the expression of genes encoding enzymes of flavonoid biosynthesis is light dependent. Yet, flavonoids accumulate in root tips of plants with light-grown shoots and light-shielded roots, consistent with shoot-to-root flavonoid movement. Using fluorescence microscopy, a selective flavonoid stain, and localized aglycone application to transparent testa mutants, we showed that flavonoids accumulated in tissues distal to the application site, indicating uptake and movement systems. This was confirmed by time-course fluorescence experiments and high-performance liquid chromatography. Flavonoid applications to root tips resulted in basipetal movement in epidermal layers, with subsequent fluorescence detected 1 cm from application sites after 1 h. Flavonoid application to midroot or cotyledons showed movement of flavonoids toward the root tip mainly in vascular tissue. Naringenin, dihydrokaempferol, and dihydroquercetin were taken up at the root tip, midroot, or cotyledons and traveled long distances via cell-to-cell movement to distal tissues, followed by conversion to quercetin and kaempferol. In contrast, kaempferol and quercetin were only taken up at the root tip. Using ATP-binding cassette (ABC) transporter and H+-ATPase inhibitors suggested that a multidrug resistance-associated protein ABCC transporter facilitated flavonoid movement away from the application site.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3