The transparent testa4 Mutation Prevents Flavonoid Synthesis and Alters Auxin Transport and the Response of Arabidopsis Roots to Gravity and Light[W]

Author:

Buer Charles S.1,Muday Gloria K.1

Affiliation:

1. Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109

Abstract

Abstract We examined whether flavonoids act as endogenous auxin transport regulators during gravity vector and light intensity changes in Arabidopsis thaliana roots. Flavonoid deficient transparent testa4 [tt4(2YY6)] seedlings had elevated root basipetal auxin transport compared with the wild type, consistent with the absence of a negative auxin transport regulator. The tt4(2YY6) roots had delayed gravitropism that was chemically complemented with a flavonoid intermediate. Flavonoid accumulation was found in wild-type columella cells, the site of gravity perception, and in epidermal and cortical cells, the site of differential growth, but flavonoid accumulation was absent in tt4(2YY6) roots. Flavonoid accumulation was higher in gravity-stimulated root tips as compared with vertical controls, with maximum differences coinciding with the timing of gravitropic bending, and was located in epidermal cells. Exogenous indole-3-acetic acid (IAA) also elevated flavonoid accumulation, suggesting that flavonoid changes in response to gravity might be partly as a result of changing IAA distribution. Acropetal IAA transport was also elevated in roots of tt4(2YY6). Flavonoid synthesis was repressed in the dark, as were differences in root acropetal transport in tt4(2YY6). These results are consistent with light- and gravity-induced flavonoid stimulation that alters auxin transport in roots and dependent physiological processes, including gravitropic bending and root development.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

Reference42 articles.

1. Bernasconi, P. (1996). Effect of synthetic and natural protein tyrosine kinase inhibitors on auxin efflux in zucchini (Cucurbita pepo) hypocotyls. Physiol. Plant  96  ,  205–210.

2. Bhalerao, R.P., Eklöf, J., Ljung, K., Marchant, A., Bennett, M., and Sandberg, G. (2002). Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. Plant J.  29  ,  325–332.

3. Blancaflor, E.B., Fasano, J.M., and Gilroy, S. (1998). Mapping the functional roles of cap cells in the response of Arabidopsis primary roots to gravity. Plant Physiol.  116  ,  213–222.

4. Blancaflor, E.B., and Masson, P.H. (2003). Plant gravitropism. Unraveling the ups and downs of a complex process. Plant Physiol.  133  ,  1677–1690.

5. Boonsirichai, K., Guan, C., Chen, R., and Masson, P.H. (2002). Root gravitropism: An experimental tool to investigate basic cellular and molecular processes underlying mechanosensing and signal transmission in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol.  53  ,  421–447.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3