Growth of Transplastomic Cells Expressing d-Amino Acid Oxidase in Chloroplasts Is Tolerant to d-Alanine and Inhibited by d-Valine

Author:

Gisby Martin F.1,Mudd Elisabeth A.1,Day Anil1

Affiliation:

1. Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom

Abstract

Abstract Dual-conditional positive/negative selection markers are versatile genetic tools for manipulating genomes. Plastid genomes are relatively small and conserved DNA molecules that can be manipulated precisely by homologous recombination. High-yield expression of recombinant products and maternal inheritance of plastid-encoded traits make plastids attractive sites for modification. Here, we describe the cloning and expression of a dao gene encoding d-amino acid oxidase from Schizosaccharomyces pombe in tobacco (Nicotiana tabacum) plastids. The results provide genetic evidence for the uptake of d-amino acids into plastids, which contain a target that is inhibited by d-alanine. Importantly, this nonantibiotic-based selection system allows the use of cheap and widely available d-amino acids, which are relatively nontoxic to animals and microbes, to either select against (d-valine) or for (d-alanine) cells containing transgenic plastids. Positive/negative selection with d-amino acids was effective in vitro and against transplastomic seedlings grown in soil. The dual functionality of dao is highly suited to the polyploid plastid compartment, where it can be used to provide tolerance against potential d-alanine-based herbicides, control the timing of recombination events such as marker excision, influence the segregation of transgenic plastid genomes, identify loci affecting dao function in mutant screens, and develop d-valine-based methods to manage the spread of transgenic plastids tagged with dao.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3