Affiliation:
1. Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology (CSIR–CCMB), Hyderabad 500007, India
2. Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology (CSIR–CCMB) campus, Hyderabad 500007, India
Abstract
Plants have two endosymbiotic organelles originated from two bacterial ancestors. The transition from an independent bacterium to a successful organelle would have required extensive rewiring of biochemical networks for its integration with archaeal host. Here, using
Arabidopsis
as a model system, we show that plant D-aminoacyl-tRNA deacylase 1 (DTD1), of bacterial origin, is detrimental to organellar protein synthesis owing to its changed tRNA recognition code. Plants survive this conflict by spatially restricting the conflicted DTD1 to the cytosol. In addition, plants have targeted archaeal DTD2 to both the organelles as it is compatible with their translation machinery due to its strict D-chiral specificity and lack of tRNA determinants. Intriguingly, plants have confined bacterial-derived DTD1 to work in archaeal-derived cytosolic compartment whereas archaeal DTD2 is targeted to bacterial-derived organelles. Overall, the study provides a remarkable example of the criticality of optimization of biochemical networks for survival and evolution of plant mitochondria and chloroplast.
Funder
Council of Scientific and Industrial Research, India
Department of Biotechnology, Ministry of Science and Technology, India
Department of Science and Technology, Ministry of Science and Technology, India
Publisher
Proceedings of the National Academy of Sciences
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献