Characterization of δ-Guaiene Synthases from Cultured Cells of Aquilaria, Responsible for the Formation of the Sesquiterpenes in Agarwood

Author:

Kumeta Yukie1,Ito Michiho1

Affiliation:

1. Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606–8501, Japan

Abstract

Abstract The resinous portions of Aquilaria plants, called agarwood, have been used as medicines and incenses. Agarwood contains a great variety of sesquiterpenes, and a study using cultured cells of Aquilaria showed the production of sesquiterpenes (α-guaiene, α-humulene, and δ-guaiene) to be induced by treatment with methyl jasmonate (MJ). In this study, the accumulation and production of sesquiterpenes were quantified. The amounts accumulated and produced reached a maximum at 12 h, and the most abundant product was α-humulene at 6 h and δ-guaiene after 12 h. However, a headspace analysis of the cells revealed that α-humulene is likely to be volatilized; so overall, the most abundant sesquiterpene in the cells was δ-guaiene. A cDNA library from RNA isolated from MJ-treated cells was screened using PCR methodologies to isolate five clones with very similar amino acid sequences. These clones were expressed in Escherichia coli, and enzymatic reactions using farnesyl pyrophosphate revealed that three of the clones yielded the same compounds as extracted from MJ-treated cells, the major product being δ-guaiene. These genes and their encoded enzymes are the first sesquiterpene synthases yielding guaiane-type sesquiterpenes as their major products to be reported. Expression of a fourth terpene synthase gene in bacteria resulted in the accumulation of the protein in insoluble forms. Site-directed mutagenesis of the inactive clone and three-dimensional homology modeling suggested that the structure of the N-terminal domain was important in facilitating proper folding of the protein to form a catalytically active structure.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3