2-(2-Phenylethyl)chromones increase in Aquilaria sinensis with the formation of agarwood

Author:

Sun Yuanyuan,Wang Meiran,Yu Meng,Feng Jian,Wei Jianhe,Liu Yangyang

Abstract

Obtained from Aquilaria Lam. and Gyrinops Gaertn., agarwood is a prestigious perfume and medicinal material in the world. Its primary chemical constituents and indicators of agarwood's development are 2-(2-phenylethyl)chromones (PECs). However, how PECs affect its quality, accumulation, and transformation pattern is still unclear. The present study investigated this issue by monitoring resin filling in agarwood generated by the whole-tree agarwood-inducing technique over a span of a year, observing the ethanol extract concentration at different sampling times, and statistically examining PECs in agarwood from each sampling period. In agarwood, the resin accumulated over time, except during the 4th–6th month due to the creation of a barrier layer. The relative content of total PECs demonstrated an overall increase throughout the year but a decrease from the 4th month to the 6th month, and the relative content of 19 PECs that persisted throughout the year was positively correlated with the content of ethanol extracts. In addition, the process of chromone accumulation was accompanied by the production and transformation of different types of chromones, with flindersia type 2-(2-phenylethyl)chromones, epoxy-2-(2-phenylethyl)chromones, and diepoxy-2-(2-phenylethyl)chromones being the major chromone components; in addition, the content of 5,6,7,8-tetrahydro-2-(2-phenylethyl)chromones kept increasing after 6 months of agarwood formation. Three main trends were identified from 58 analogs of PECs, each with notable variation. The first type had the highest content at the beginning of resin formation. The second type had the highest content at 6 months and then started to decrease, and the third type had a slowly increasing content. As a whole, this study systematically investigated the accumulation of PECs during injury-induced agarwood production in A. sinensis, which is of scientific significance in resolving the transformation of PECs and revealing the secret of agarwood formation.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3