Linking the Salt Transcriptome with Physiological Responses of a Salt-Resistant Populus Species as a Strategy to Identify Genes Important for Stress Acclimation

Author:

Brinker Monika1,Brosché Mikael1,Vinocur Basia1,Abo-Ogiala Atef1,Fayyaz Payam1,Janz Dennis1,Ottow Eric A.1,Cullmann Andreas D.1,Saborowski Joachim1,Kangasjärvi Jaakko1,Altman Arie1,Polle Andrea1

Affiliation:

1. Büsgen-Institut, Forstbotanik und Baumphysiologie (M. Brinker, A.A.-O., P.F., D.J., E.A.O., A.P.), and Büsgen-Institut, Ökoinformatik, Biometrie, und Waldwachstum (A.D.C., J.S.), Georg-August Universität Göttingen, 37077 Goettingen, Germany; Plant Biology, Department of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland (M. Brosché, J.K.); Evogene, Ltd., Rehovo

Abstract

Abstract To investigate early salt acclimation mechanisms in a salt-tolerant poplar species (Populus euphratica), the kinetics of molecular, metabolic, and physiological changes during a 24-h salt exposure were measured. Three distinct phases of salt stress were identified by analyses of the osmotic pressure and the shoot water potential: dehydration, salt accumulation, and osmotic restoration associated with ionic stress. The duration and intensity of these phases differed between leaves and roots. Transcriptome analysis using P. euphratica-specific microarrays revealed clusters of coexpressed genes in these phases, with only 3% overlapping salt-responsive genes in leaves and roots. Acclimation of cellular metabolism to high salt concentrations involved remodeling of amino acid and protein biosynthesis and increased expression of molecular chaperones (dehydrins, osmotin). Leaves suffered initially from dehydration, which resulted in changes in transcript levels of mitochondrial and photosynthetic genes, indicating adjustment of energy metabolism. Initially, decreases in stress-related genes were found, whereas increases occurred only when leaves had restored the osmotic balance by salt accumulation. Comparative in silico analysis of the poplar stress regulon with Arabidopsis (Arabidopsis thaliana) orthologs was used as a strategy to reduce the number of candidate genes for functional analysis. Analysis of Arabidopsis knockout lines identified a lipocalin-like gene (AtTIL) and a gene encoding a protein with previously unknown functions (AtSIS) to play roles in salt tolerance. In conclusion, by dissecting the stress transcriptome of tolerant species, novel genes important for salt endurance can be identified.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 106 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3