CYP707A1 and CYP707A2, Which Encode Abscisic Acid 8′-Hydroxylases, Are Indispensable for Proper Control of Seed Dormancy and Germination in Arabidopsis

Author:

Okamoto Masanori1,Kuwahara Ayuko1,Seo Mistunori1,Kushiro Tetsuo1,Asami Tadao1,Hirai Nobuhiro1,Kamiya Yuji1,Koshiba Tomokazu1,Nambara Eiji1

Affiliation:

1. RIKEN Plant Science Center, Yokohama, Kanagawa 230–0045, Japan (M.O., A.K., M.S., T. Kushiro, Y.K., E.N.); Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192–0397, Japan (M.O., T. Koshiba); RIKEN, Discovery Research Institute, Wako, Saitama 351–0198, Japan (T.A.); and International Innovation Center, Kyoto University, Kyoto 606–8501, Japan (N.H.)

Abstract

Abstract Endogenous abscisic acid (ABA) levels are regulated by both biosynthesis and catabolism of the hormone. ABA 8′-hydroxylase is considered to be the key catabolic enzyme in many physiological processes. We have previously identified that four members of the Arabidopsis (Arabidopsis thaliana) CYP707A gene family (CYP707A1 to CYP707A4) encode ABA 8′-hydroxylases, and that the cyp707a2 mutants showed an increase in ABA levels in dry and imbibed seeds. In this study, we showed that the cyp707a1 mutant accumulated ABA to higher levels in dry seeds than the cyp707a2 mutant. Expression analysis showed that the CYP707A1 was expressed predominantly during mid-maturation and was down-regulated during late-maturation. Concomitantly, the CYP707A2 transcript levels increased from late-maturation to mature dry seed. Phenotypic analysis of single and double cyp707a mutants indicates that the CYP707A1 is important for reducing ABA levels during mid-maturation. On the other hand, CYP707A2 is responsible for the regulation of ABA levels from late-maturation to germination. Moreover, CYP707A1 and CYP707A3 were also shown to be involved in postgermination growth. Spatial expression analysis suggests that CYP707A1 was expressed predominantly in embryo during mid-maturation, whereas CYP707A2 expression was detected in both embryo and endosperm from late-maturation to germination. Our results demonstrate that each CYP707A gene plays a distinct role during seed development and postgermination growth.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3