Disruption and Overexpression of Arabidopsis Phytosulfokine Receptor Gene Affects Cellular Longevity and Potential for Growth

Author:

Matsubayashi Yoshikatsu1,Ogawa Mari1,Kihara Hitomi1,Niwa Masaaki1,Sakagami Youji1

Affiliation:

1. Graduate School of Bio-Agricultural Sciences, Nagoya University, Chikusa, Nagoya 464–8601, Japan

Abstract

Abstract Phytosulfokine (PSK), a 5-amino acid sulfated peptide that has been identified in conditioned medium of plant cell cultures, promotes cellular growth in vitro via binding to the membrane-localized PSK receptor. Here, we report that loss-of-function and gain-of-function mutations of the Arabidopsis (Arabidopsis thaliana) PSK receptor gene (AtPSKR1) alter cellular longevity and potential for growth without interfering with basic morphogenesis of plants. Although mutant pskr1-1 plants exhibit morphologically normal growth until 3 weeks after germination, individual pskr1-1 cells gradually lose their potential to form calluses as tissues mature. Shortly after a pskr1-1 callus forms, it loses potential for growth, resulting in formation of a smaller callus than the wild type. Leaves of pskr1-1 plants exhibit premature senescence after bolting. Leaves of AtPSKR1ox plants exhibit greater longevity and significantly greater potential for callus formation than leaves of wild-type plants, irrespective of their age. Calluses derived from AtPSKR1ox plants maintain their potential for growth longer than wild-type calluses. Combined with our finding that PSK precursor genes are more strongly expressed in mature plant parts than in immature plant parts, the available evidence indicates that PSK signaling affects cellular longevity and potential for growth and thereby exerts a pleiotropic effect on cultured tissue in response to environmental hormonal conditions.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3