Affiliation:
1. Commonwealth Scientific and Industrial Research Organization, Plant Industry, Canberra, Australian Capital Territory 2601, Australia (R.W.K., L.T.E., C.B., P.M.C.); Swedish University of Agricultural Sciences, Umeå Plant Science Centre, S–901 83 Umea, Sweden (T.M.); DLF-Trifolium A/S, Research Division, DK–4660 Roskilde, Denmark (J.M., C.H.A.); and AgResearch, Grasslands Forage Biotechnology, Pa
Abstract
Abstract
Seasonal control of flowering often involves leaf sensing of daylength coupled to time measurement and generation and transport of florigenic signals to the shoot apex. We show that transmitted signals in the grass Lolium temulentum may include gibberellins (GAs) and the FLOWERING LOCUS T (FT) gene. Within 2 h of starting a florally inductive long day (LD), expression of a 20-oxidase GA biosynthetic gene increases in the leaf; its product, GA20, then increases 5.7-fold versus short day; its substrate, GA19, decreases equivalently; and a bioactive product, GA5, increases 4-fold. A link between flowering, LD, GAs, and GA biosynthesis is shown in three ways: (1) applied GA19 became florigenic on exposure to LD; (2) expression of LtGA20ox1, an important GA biosynthetic gene, increased in a florally effective LD involving incandescent lamps, but not with noninductive fluorescent lamps; and (3) paclobutrazol, an inhibitor of an early step of GA biosynthesis, blocked flowering, but only if applied before the LD. Expression studies of a 2-oxidase catabolic gene showed no changes favoring a GA increase. Thus, the early LD increase in leaf GA5 biosynthesis, coupled with subsequent doubling in GA5 content at the shoot apex, provides a substantial trail of evidence for GA5 as a LD florigen. LD signaling may also involve transport of FT mRNA or protein because expression of LtFT and LtCONSTANS increased rapidly, substantially (>80-fold for FT), and independently of GA. However, because a LD from fluorescent lamps induced LtFT expression but not flowering, the nature of the light response of FT requires clarification.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
104 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献