Affiliation:
1. Biotechnology Center for Agriculture and the Environment, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901–8520
Abstract
Abstract
γ-Glutamyl transpeptidases (GGTs) are essential for hydrolysis of the tripeptide glutathione (γ-glutamate-cysteine-glycine) and glutathione S-conjugates since they are the only enzymes known to cleave the amide bond linking the γ-carboxylate of glutamate to cysteine. In Arabidopsis thaliana, four GGT genes have been identified based on homology with animal GGTs. They are designated GGT1 (At4g39640), GGT2 (At4g39650), GGT3 (At1g69820), and GGT4 (At4g29210). By analyzing the expression of each GGT in plants containing GGT:β-glucuronidase fusions, the temporal and spatial pattern of degradation of glutathione and its metabolites was established, revealing appreciable overlap among GGTs. GGT2 exhibited narrow temporal and spatial expression primarily in immature trichomes, developing seeds, and pollen. GGT1 and GGT3 were coexpressed in most organs/tissues. Their expression was highest at sites of rapid growth including the rosette apex, floral stem apex, and seeds and might pinpoint locations where glutathione is delivered to sink tissues to supplement high demand for cysteine. In mature tissues, they were expressed only in vascular tissue. Knockout mutants of GGT2 and GGT4 showed no phenotype. The rosettes of GGT1 knockouts showed premature senescence after flowering. Knockouts of GGT3 showed reduced number of siliques and reduced seed yield. Knockouts were used to localize and assign catalytic activity to each GGT. In the standard GGT assay with γ-glutamyl p-nitroanilide as substrate, GGT1 accounted for 80% to 99% of the activity in all tissues except seeds where GGT2 was 50% of the activity. Protoplasting experiments indicated that both GGT1 and GGT2 are localized extracellularly but have different physical or chemical associations.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
91 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献