HAWAIIAN SKIRT: An F-Box Gene That Regulates Organ Fusion and Growth in Arabidopsis

Author:

González-Carranza Zinnia H.1,Rompa Unchalee1,Peters Janny L.1,Bhatt Anuj M.1,Wagstaff Carol1,Stead Anthony D.1,Roberts Jeremy A.1

Affiliation:

1. Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom (Z.H.G.-C., U.R., J.A.R.); Section Plant Genetics, Institute for Wetland and Water Research, Radboud University Nijmegen, 6525 ED Nijmegen, The Netherlands (J.L.P); Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdo

Abstract

AbstractA fast neutron-mutagenized population of Arabidopsis (Arabidopsis thaliana) Columbia-0 wild-type plants was screened for floral phenotypes and a novel mutant, termed hawaiian skirt (hws), was identified that failed to shed its reproductive organs. The mutation is the consequence of a 28 bp deletion that introduces a premature amber termination codon into the open reading frame of a putative F-box protein (At3g61590). The most striking anatomical characteristic of hws plants is seen in flowers where individual sepals are fused along the lower part of their margins. Crossing of the abscission marker, ProPGAZAT:β-glucuronidase, into the mutant reveals that while floral organs are retained it is not the consequence of a failure of abscission zone cells to differentiate. Anatomical analysis indicates that the fusion of sepal margins precludes shedding even though abscission, albeit delayed, does occur. Spatial and temporal characterization, using ProHWS:β-glucuronidase or ProHWS:green fluorescent protein fusions, has identified HWS expression to be restricted to the stele and lateral root cap, cotyledonary margins, tip of the stigma, pollen, abscission zones, and developing seeds. Comparative phenotypic analyses performed on the hws mutant, Columbia-0 wild type, and Pro35S:HWS ectopically expressing lines has revealed that loss of HWS results in greater growth of both aerial and below-ground organs while overexpressing the gene brings about a converse effect. These observations are consistent with HWS playing an important role in regulating plant growth and development.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3