Impairment of the Photorespiratory Pathway Accelerates Photoinhibition of Photosystem II by Suppression of Repair But Not Acceleration of Damage Processes in Arabidopsis

Author:

Takahashi Shunichi1,Bauwe Hermann1,Badger Murray1

Affiliation:

1. Molecular Plant Physiology Group and Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biological Sciences, Australian National University, Canberra, Australian Capital Territory 2601, Australia (S.T., M.B.); and Plant Physiology Department, Bioscience Institute, University of Rostock, D–18051 Rostock, Germany (H.B.)

Abstract

Abstract Oxygenation of ribulose-1,5-bisphosphate catalyzed by Rubisco produces glycolate-2-P. The photorespiratory pathway, which consists of photorespiratory carbon and nitrogen cycles, metabolizes glycolate-2-P to the Calvin cycle intermediate glycerate-3-P and is proposed to be important for avoiding photoinhibition of photosystem II (PSII), especially in C3 plants. We show here that mutants of Arabidopsis (Arabidopsis thaliana) with impairment of ferredoxin-dependent glutamate synthase, serine hydroxymethyltransferase, glutamate/malate transporter, and glycerate kinase had accelerated photoinhibition of PSII by suppression of the repair of photodamaged PSII and not acceleration of the photodamage to PSII. We found that suppression of the repair process was attributable to inhibition of the synthesis of the D1 protein at the level of translation. Our results suggest that the photorespiratory pathway helps avoid inhibition of the synthesis of the D1 protein, which is important for the repair of photodamaged PSII upon interruption of the Calvin cycle.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3