Reduced Activity of Antioxidant Machinery Is Correlated with Suppression of Totipotency in Plant Protoplasts

Author:

Papadakis Anastasia K.1,Siminis Charalambos I.,Roubelakis-Angelakis Kalliopi A.1

Affiliation:

1. Department of Biology, University of Crete, P.O. Box 2208, 71409 Heraklio, Greece

Abstract

Abstract We previously showed that during protoplast isolation, an oxidative burst occurred and the generation of active oxygen species was differentially mediated in tobacco (Nicotiana tabacum) and grapevine (Vitis vinifera), accompanied by significant quantitative differences (A.K. Papadakis, K.A. Roubelakis-Angelakis [1999] Plant Physiol 127: 197–205). We have now further tested if the expression of totipotency in protoplasts is related to the activity of cellular antioxidant machinery during protoplast culture. Totipotent (T) tobacco protoplasts had 2-fold lower contents of intracellular O2  .− and H2O2 and 7-fold lower levels of O2  .− and H2O2 in the culture medium, compared with non-totipotent (NT) tobacco protoplasts. Addition of alkaline dimethylsulfoxide, known to generate O2  .−, resulted in isolation of tobacco protoplasts with reduced viability and cell division potential during subsequent culture. Active oxygen species levels decreased in tobacco and grapevine protoplasts during culturing, although higher contents of O2  .− and H2O2 were still found in NT- compared with T-tobacco protoplasts, after 8 d in culture. In T-tobacco protoplasts, the reduced forms of ascorbate and glutathione predominated, whereas in NT-tobacco and grapevine protoplasts, the oxidized forms predominated. In addition, T-tobacco protoplasts exhibited severalfold lower lipid peroxidation than NT-tobacco and grapevine protoplasts. Furthermore, several antioxidant enzyme activities were increased in T-tobacco protoplasts. Superoxide dismutase activity increased in tobacco, but not in grapevine protoplasts during culturing due to the increased expression of cytoplasmic Cu/Zn-superoxide dismutase. The increase was only sustained in T-tobacco protoplasts for d 8. Together, these results suggest that suppressed expression of totipotency in protoplasts is correlated with reduced activity of the cellular antioxidant machinery.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3