An Integrated Physiological, Cytology and Proteomics Reveals Network of Sugarcane Protoplasts Responses to Enzymolysis

Author:

Zhang Demei,Wang Rui,xiao Jiming,Zhu Shuifang,Li Xinzhu,Han Shijian,Li Zhigang,Zhao YangORCID,Islam Shohag Md. Jahidul,He Zhenli,Li Suli

Abstract

AbstractThe protoplast experimental system has been becoming a powerful tool for functional genomics and cell fusion breeding. However, the physiology and molecular mechanism during enzymolysis is not completely understood and has become a major obstacle to protoplast regeneration. Our study used physiological, cytology, iTRAQ (Isobaric Tags for Relative and Absolute Quantification) -based proteomic and RT-PCR analyses to compare the young leaves of sugarcane (ROC22) and protoplasts of more than 90% viability. We found that oxidation product MDA content increased in the protoplasts after enzymolysis and several antioxidant enzymes such as POD, CAT, APX, and O2- content significantly decreased. The cytology results showed that after enzymolysis, the cell membranes were perforated to different degrees, the nuclear activity was weakened, the nucleolus structure was not obvious, and the microtubules depolymerized and formed many short rod-like structures in protoplasts. The proteomic results showed that 1,477 differential proteins were down-regulated and 810 were up-regulated after enzymolysis of sugarcane young leaves. The GO terms, KEGG and KOG enrichment analysis revealed that differentially abundant proteins were mainly involved in bioenergetic metabolism, cellular processes, osmotic stress, and redox homeostasis of protoplasts, which would allow protein biosynthesis or / degradation. The RT-PCR analysis revealed the expression of osmotic stress resistance genes such as DREB, WRKY, MAPK4, and NAC were up-regulated. Meanwhile, the expression of key regeneration genes such as CyclinD3, CyclinA, CyclinB, Cdc2, PSK, CESA and GAUT were significantly down-regulated in the protoplasts. Hierarchical clustering, identification of redox proteins and oxidation products showed that these proteins were involved in dynamic networks in response to oxidative stress after enzymolysis. We used a variety of methods to figure out how young sugarcane leaves react to enzymes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3