Sugar-Binding Activity of Pea Lectin Enhances Heterologous Infection of Transgenic Alfalfa Plants by Rhizobium leguminosarum biovar viciae

Author:

van Rhijn Pieternel1,Fujishige Nancy A.1,Lim Pyung Ok1,Hirsch Ann M.12

Affiliation:

1. Department of Molecular, Cell, and Developmental Biology (P.v.R., N.A.F., P.O.L., A.M.H.) and

2. Molecular Biology Institute (A.M.H.), 405 Hilgard Avenue, University of California, Los Angeles, California 90095–1606

Abstract

Abstract Transgenic alfalfa (Medicago sativa L. cv Regen) roots carrying genes encoding soybean lectin or pea (Pisum sativum) seed lectin (PSL) were inoculated withBradyrhizobium japonicum or Rhizobium leguminosarum bv viciae, respectively, and their responses were compared with those of comparably inoculated control plants. We found that nodule-like structures formed on alfalfa roots only when the rhizobial strains produced Nod factor from the alfalfa-nodulating strain, Sinorhizobium meliloti. Uninfected nodule-like structures developed on the soybean lectin-transgenic plant roots at very low inoculum concentrations, but bona fide infection threads were not detected even when B. japonicum produced the appropriate S. melilotiNod factor. In contrast, the PSL-transgenic plants were not only well nodulated but also exhibited infection thread formation in response toR. leguminosarum bv viciae, but only when the bacteria expressed the complete set of S. meliloti nod genes. A few nodules from the PSL-transgenic plant roots were even found to be colonized by R. leguminosarum bvviciae expressing S. meliloti nod genes, but the plants were yellow and senescent, indicating that nitrogen fixation did not take place. Exopolysaccharide appears to be absolutely required for both nodule development and infection thread formation because neither occurred in PSL-transgenic plant roots following inoculation with an Exo−  R. leguminosarumbv viciae strain that produced S. meliloti Nod factor.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3