Evaluation of Symbiotic Association between Various Rhizobia, Capable of Producing Plant-Growth-Promoting Biomolecules, and Mung Bean for Sustainable Production

Author:

Mahmood Abid,Shahzad Tanvir,Hussain Sabir,Ali Qasim,Ali Hayssam M.ORCID,Yasin Sanaullah,Ibrahim Muhammad,Salem Mohamed Z. M.ORCID,Khalid Muhammad

Abstract

To feed the increased world population, sustainability in the production of crops is the need of the hour, and exploration of an effective symbiotic association of rhizobia with legumes may serve the purpose. A laboratory-scale experiment was conducted to evaluate the symbiotic effectiveness of twenty wild rhizobial isolates (MR1–MR20) on the growth, physiology, biochemical traits, and nodulation of mung bean to predict better crop production with higher yields. Rhizobial strain MR4 resulted in a 52% increase in shoot length and 49% increase in shoot fresh mass, while MR5 showed a 30% increase in root length, with 67% and 65% improvement in root fresh mass by MR4 and MR5, respectively, compared to uninoculated control. Total dry matter of mung bean was enhanced by 73% and 68% with strains MR4 and MR5 followed by MR1 and MR3 with 60% increase in comparison to control. Rhizobial strain MR5 produced a maximum (25 nodules) number of nodules followed by MR4, MR3, and MR1 which produced 24, 23, and 21 nodules per plant. Results related to physiological parameters showed the best performance of MR4 and MR5 compared to control among all treatments. MR4 strain helped the plants to produce the lowest values of total soluble protein (TSP) (38% less), flavonoids contents (44% less), and malondialdehyde (MDA) contents (52% less) among all treatments compared to uninoculated control plants. Total phenolics contents of mung bean plants also showed significantly variable results, with the highest value of 54.79 mg kg−1 in MR4 inoculated plants, followed by MR5 and MR1 inoculated plants, while the minimum concentration of total phenolics was recorded in uninoculated control plants of mung bean. Based on the results of growth promotion, nodulation ability, and physiological and biochemical characteristics recorded in an experimental trial conducted under gnotobiotic conditions, four rhizobial isolates (MR1, MR3, MR4, and MR5) were selected using cluster and principal component analysis. Selected strains were also tested for a variety of plant-growth-promoting molecules to develop a correlation with the results of plant-based parameters, and it was concluded that these wild rhizobial strains were effective in improving sustainable production of mung bean.

Funder

Higher Education Commission

King Saud University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3