Regulation of VRN-1 Vernalization Genes in Normal and Transgenic Polyploid Wheat

Author:

Loukoianov Artem1,Yan Liuling1,Blechl Ann1,Sanchez Alexandra1,Dubcovsky Jorge1

Affiliation:

1. Department of Plant Sciences, University of California, Davis, California 95616 (A.L., L.Y., A.S., J.D.); and United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California 94710 (A.B.)

Abstract

Abstract Vernalization, the requirement of a long exposure to low temperatures to accelerate flowering, is an essential adaptation of plants to cold winters. The vernalization gene VRN-1 plays an important role in this process in diploid (Triticum monococcum) and polyploid wheat (Triticum aestivum). We have recently shown that the diploid wheat VRN-Am1 gene was similar to the Arabidopsis (Arabidopsis thaliana L. Heynh.) APETALA1 meristem identity gene. We also showed that dominant Vrn-Am1 alleles were the result of loss-of-function mutations in regulatory regions recognized by a VRN-1 repressor, likely VRN-2. This model predicts that only the dominant Vrn-1 allele will be transcribed in lines carrying both recessive and dominant alleles. Here, we confirm this prediction in young isogenic lines of hexaploid wheat carrying different dominant Vrn-A1, Vrn-B1, and Vrn-D1 alleles, and also in heterozygous VRN-1 diploid wheat plants. However, a few weeks later, transcripts from the recessive alleles were also detected in both the polyploid and heterozygous diploid spring plants. Transcription of the recessive alleles was preceded by a reduction of the transcript levels of VRN-2. These results suggest that the dominant Vrn-1 allele or a gene regulated by VRN-1 down-regulates the VRN-2 repressor facilitating the transcription of the recessive alleles in unvernalized plants. We also show here that the level of VRN-1 transcripts in early developmental stages is critical for flowering initiation. A reduction of VRN-1 transcript levels by RNA interference delayed apex transition to the reproductive stage, increased the number of leaves, and delayed heading time by 2 to 3 weeks. We hypothesize that the coordinated transcription of dominant and recessive alleles may contribute to an earlier attainment of the VRN-1 transcript level threshold required to trigger flowering initiation in polyploid wheat.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3