Analysis of the Effects of the Vrn-1 and Ppd-1 Alleles on Adaptive and Agronomic Traits in Common Wheat (Triticum aestivum L.)

Author:

Plotnikov Kirill O.1,Klimenko Alexandra I.2ORCID,Ovchinnikova Ekaterina S.1,Lashin Sergey A.2ORCID,Goncharov Nikolay P.1

Affiliation:

1. Early Maturity Genetics Laboratory, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Akademika Lavrentieva Avenue, 10, 630090 Novosibirsk, Russia

2. Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Akademika Lavrentieva Avenue, 10, 630090 Novosibirsk, Russia

Abstract

Wheat heading time is primarily governed by two loci: VRN-1 (response to vernalization) and PPD-1 (response to photoperiod). Five sets of near-isogenic lines (NILs) were studied with the aim of investigating the effect of the aforementioned genes on wheat vegetative period duration and 14 yield-related traits. Every NIL was sown in the hydroponic greenhouse of the Institute of Cytology and Genetics, SB RAS. To assess their allelic composition at the VRN-1 and PPD-1 loci, molecular markers were used. It was shown that HT in plants with the Vrn-A1vrn-B1vrn-D1 genotype was reduced by 29 and 21 days (p < 0.001) in comparison to HT in plants with the vrn-A1Vrn-B1vrn-D1 and the vrn-A1vrn-B1Vrn-D1 genotypes, respectively. In our study, we noticed a decrease in spike length as well as spikelet number per spike parameter for some NIL carriers of the Vrn-A1a allele in comparison to carriers of the Vrn-B1 allele. PCA revealed three first principal components (PC), together explaining more than 70% of the data variance. Among the studied genetic traits, the Vrn-A1a and Ppd-D1a alleles showed significant correlations with PCs. Regarding genetic components, significant correlations were calculated between PC3 and Ppd-B1a (−0.26, p < 0.05) and Vrn-B1 (0.57, p < 0.05) alleles. Thus, the presence of the Vrn-A1a allele affects heading time, while Ppd-D1a is associated with plant height reduction.

Funder

Russian Science Foundation

government of the Novosibirsk region

Publisher

MDPI AG

Reference95 articles.

1. (2023, December 14). Facts & Figures on Food and Biodiversity. Available online: https://idrc-crdi.ca/en/research-in-action/facts-figures-food-and-biodiversity.

2. Food Security and the Dynamics of Wheat and Maize Value Chains in Africa and Asia;Grote;Front. Sustain. Food Syst.,2021

3. Decline in Climate Resilience of European Wheat;Kahiluoto;Proc. Natl. Acad. Sci. USA,2019

4. The Global Supply and Demand for Agricultural Land in 2050: A Perfect Storm in the Making?;Hertel;Am. J. Agric. Econ.,2011

5. What Next for Agriculture After Durban?;Beddington;Science,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3