CONSTANS Activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to Promote Flowering in Arabidopsis

Author:

Yoo Seung Kwan1,Chung Kyung Sook1,Kim Joonki1,Lee Jeong Hwan1,Hong Sung Myun1,Yoo Seong Jeon1,Yoo So Yeon1,Lee Jong Seob1,Ahn Ji Hoon1

Affiliation:

1. Plant Signaling Network Research Center, School of Life Sciences and Biotechnology, Korea University, Seoul 136–701, Korea (S.K.Y., K.S.C., J.K., J.H.L., S.M.H., S.J.Y., S.Y.Y., J.H.A.); and School of Biological Sciences, Seoul National University, Seoul 152–742, Korea (J.S.L.)

Abstract

Abstract CONSTANS (CO) regulates flowering time by positively regulating expression of two floral integrators, FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), in Arabidopsis (Arabidopsis thaliana). FT and SOC1 have been proposed to act in parallel pathways downstream of CO based on genetic analysis using weak ft alleles, since ft soc1 double mutants showed an additive effect in suppressing the early flowering of CO overexpressor plants. However, this genetic analysis was inconsistent with the sequential induction pattern of FT and SOC1 found in inducible CO overexpressor plants. Hence, to identify genetic interactions of CO, FT, and SOC1, we carried out genetic and expression analyses with a newly isolated T-DNA allele of FT, ft-10. We found that ft-10 almost completely suppressed the early flowering phenotype of CO overexpressor plants, whereas soc1-2 partially suppressed the phenotype, suggesting that FT is the major output of CO. Expression of SOC1 was altered in gain- or loss-of-function mutants of FT, whereas expression of FT remained unchanged in gain- or loss-of-function mutants of SOC1, suggesting that FT positively regulates SOC1 to promote flowering. In addition, inactivation of FT caused down-regulation of SOC1 even in plants overexpressing CO, indicating that FT is required for SOC1 induction by CO. Taken together, these data suggest that CO activates SOC1 through FT to promote flowering in Arabidopsis.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3