Affiliation:
1. Crop Gene Engineering Key Laboratory of Hunan Province, Hunan Agricultural University, Changsha, China, 410128 (Xinbo C.); and Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (S.M.G., X.L., Xinlu C., R.A.B., M.A.J.)
Abstract
Abstract
Insertional mutagenesis of Arabidopsis (Arabidopsis thaliana) was used to identify a novel recessive mutant, designated resurrection1 (rst1), which possesses a dramatic alteration in its cuticular waxes and produces shrunken nonviable seeds due to arrested embryo development. The RST1 gene sequence associated with these phenotypes was verified by three independent, allelic, insertion mutants, designated rst1-1, rst1-2, and rst1-3, with inserts in the first exon, 12th intron, and fourth exon, respectively. These three rst1 allelic mutants have nearly identical alterations in their wax profiles and embryo development. Compared to wild type, the wax on rst1 inflorescence stems is reduced nearly 60% in total amount, has a proportional reduction in aldehydes and aldehyde metabolites, and has a proportional increase in acids, primary alcohols, and esters. Compared to wild type, the C29 alkanes on rst1 are nearly 6-fold lower, and the C30 primary alcohols are 4-fold higher. These results indicate that rst1 causes shunting of most wax precursors away from alkane synthesis and into the primary-alcohol-producing branch of the pathway. In contrast to stems, the wax on rst1 mutant leaves increased roughly 43% in amount relative to the wild type, with the major increase occurring in the C31 and C33 alkanes. Unique among known wax mutants, approximately 70% of rst1 seeds are shrunken and nonviable, with these being randomly distributed within both inflorescence and silique. Viable seeds of rst1 are slightly larger than those of wild type, and although the viable rst1 seeds contain more total triacylglycerol-derived fatty acids, the proportions of these fatty acids are not significantly different from wild type. Shrunken seeds contain 34% of the fatty acids of wild-type seeds, with proportionally more palmitic, stearic, and oleic acids, and less of the longer and more desaturated homologs. Histological analysis of aborted rst1 seeds revealed that embryo development terminates at the approximate heart-shaped stage, whereas viable rst1 and wild-type embryos develop similarly. The RST1 gene encodes a predicted 1,841-amino acid novel protein with a molecular mass of 203.6 kD and a theoretical pI of 6.21. The RST1 transcript was found in all tissues examined including leaves, flowers, roots, stems, and siliques, but accumulation levels were not correlated with the degree to which different organs appeared affected by the mutation. The new RST1 gene reveals a novel genetic connection between lipid synthesis and embryo development; however, RST1's exact role is still quite unknown. The degree to which RST1 is associated with lipid signaling in development is an important focus of ongoing studies.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Reference47 articles.
1. Baud S, Bellec Y, Miquel M, Bellini C, Caboche M, Lepiniec L, Faure JD, Rochat C (2004) gurke and pasticcino3 mutants affected in embryo development are impaired in acetyl-CoA carboxylase. EMBO Rep5:515–520
2. Baud S, Guyon V, Kronenberger J, Wuilleme S, Miquel M, Caboche M, Lepiniec L, Rochat C (2003) Multifunctional acetyl-CoA carboxylase 1 is essential for very long chain fatty acid elongation and embryo development in Arabidopsis. Plant J33:75–86
3. Berleth T, Chatfield S (2002) Embryogenesis: pattern formation from a single cell. In C Somerville, E Meyerowitz, eds, The Arabidopsis Book. American Society of Plant Biologists, Rockville, MD, doi/10.1199/tab.0051, http://www.aspb.org/publications/arabidopsis/
4. Bird SM, Gray JE (2003) Signals from the cuticle affect epidermal cell differentiation. New Phytol157:9–23
5. Borisjuk L, Wang TL, Rolletschek H, Wobus U, Weber H (2002) A pea seed mutant affected in the differentiation of the embryonic epidermis is impaired in embryo growth and seed maturation. Development129:1595–1607
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献