Combining Experimental and Predicted Datasets for Determination of the Subcellular Location of Proteins in Arabidopsis

Author:

Heazlewood Joshua L.1,Tonti-Filippini Julian1,Verboom Robert E.1,Millar A. Harvey1

Affiliation:

1. Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia

Abstract

Abstract Substantial experimental datasets defining the subcellular location of Arabidopsis (Arabidopsis thaliana) proteins have been reported in the literature in the form of organelle proteomes built from mass spectrometry data (approximately 2,500 proteins). Subcellular location for specific proteins has also been published based on imaging of chimeric fluorescent fusion proteins in intact cells (approximately 900 proteins). Further, the more diverse history of biochemical determination of subcellular location is stored in the entries of the Swiss-Prot database for the products of many Arabidopsis genes (approximately 1,800 proteins). Combined with the range of bioinformatic targeting prediction tools and comparative genomic analysis, these experimental datasets provide a powerful basis for defining the final location of proteins within the wide variety of subcellular structures present inside Arabidopsis cells. We have analyzed these published experimental and prediction data to answer a range of substantial questions facing researchers about the veracity of these approaches to determining protein location and their interrelatedness. We have merged these data to form the subcellular location database for Arabidopsis proteins (SUBA), providing an integrated understanding of protein location, encompassing the plastid, mitochondrion, peroxisome, nucleus, plasma membrane, endoplasmic reticulum, vacuole, Golgi, cytoskeleton structures, and cytosol (www.suba.bcs.uwa.edu.au). This includes data on more than 4,400 nonredundant Arabidopsis protein sequences. We also provide researchers with an online resource that may be used to query protein sets or protein families and determine whether predicted or experimental location data exist; to analyze the nature of contamination between published proteome sets; and/or for building theoretical subcellular proteomes in Arabidopsis using the latest experimental data.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3