The Arabidopsis PEX12 Gene Is Required for Peroxisome Biogenesis and Is Essential for Development

Author:

Fan Jilian1,Quan Sheng1,Orth Travis1,Awai Chie1,Chory Joanne1,Hu Jianping1

Affiliation:

1. Department of Energy Plant Research Laboratory (J.F., S.Q., T.O., C.A., J.H.), and Department of Plant Biology (J.H.), Michigan State University, East Lansing, Michigan 48824; and Howard Hughes Medical Institute, Plant Biology Laboratory, The Salk Institute, La Jolla, California 92037 (J.C.)

Abstract

Abstract Peroxisomes perform diverse and vital functions in eukaryotes, and abnormalities in peroxisomal function lead to severe developmental disorders in humans. Peroxisomes are also involved in a wide array of physiological and metabolic functions unique to plants, yet many aspects of this important organelle are poorly understood. In yeast and mammals, various steps in peroxisome biogenesis require the function of peroxin (PEX) proteins, among which PEX12 is a RING finger peroxisomal membrane protein involved in the import of matrix proteins. To investigate the role of PEX12 in plants, we identified a T-DNA knockout allele of PEX12 and generated partial loss-of-function pex12 mutants using RNA interference. We show that pex12 null mutants are developmentally arrested during early embryogenesis, and that the embryo-lethal phenotype can be rescued by overexpression of the PEX12-cyan fluorescent protein fusion protein, which targets to the peroxisome. Using virus-induced gene-silencing techniques, we demonstrate that peroxisomal number and fluorescence of the yellow fluorescent protein-peroxisome targeting signal type 1 protein are greatly reduced when PEX12 is silenced. RNA interference plants with partial reduction of the PEX12 transcript exhibit impaired peroxisome biogenesis and function, inhibition of plant growth, and reduced fertility. Our work provides evidence that the Arabidopsis (Arabidopsis thaliana) PEX12 protein is required for peroxisome biogenesis and plays an essential role throughout plant development.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3