AtMetExpress Development: A Phytochemical Atlas of Arabidopsis Development

Author:

Matsuda Fumio1,Hirai Masami Y.1,Sasaki Eriko1,Akiyama Kenji1,Yonekura-Sakakibara Keiko1,Provart Nicholas J.1,Sakurai Tetsuya1,Shimada Yukihisa1,Saito Kazuki1

Affiliation:

1. RIKEN Plant Science Center, Tsurumi-ku, Yokohama 230–0045, Japan (F.M., M.Y.H., E.S., K.A., K.Y.-S., T.S., Y.S., K.S.); Japan Science and Technology Agency, CREST, Kawaguchi, Saitama 332–0012, Japan (M.Y.H.); Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2 (N.J.P.); and Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263–8522, Ja

Abstract

Abstract Plants possess many metabolic genes for the production of a wide variety of phytochemicals in a tissue-specific manner. However, the metabolic systems behind the diversity and tissue-dependent regulation still remain unknown due to incomplete characterization of phytochemicals produced in a single plant species. Thus, having a metabolome dataset in addition to the genome and transcriptome information resources would enrich our knowledge of plant secondary metabolism. Here we analyzed phytochemical accumulation during development of the model plant Arabidopsis (Arabidopsis thaliana) using liquid chromatography-mass spectrometry in samples covering many growth stages and organs. We also obtained tandem mass spectrometry spectral tags of many metabolites as a resource for elucidation of metabolite structure. These are part of the AtMetExpress metabolite accumulation atlas. Based on the dataset, we detected 1,589 metabolite signals from which the structures of 167 metabolites were elucidated. The integrated analyses with transcriptome data demonstrated that Arabidopsis produces various phytochemicals in a highly tissue-specific manner, which often accompanies the expression of key biosynthesis-related genes. We also found that a set of biosynthesis-related genes is coordinately expressed among the tissues. These data suggested that the simple mode of regulation, transcript to metabolite, is an origin of the dynamics and diversity of plant secondary metabolism.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3