The Sterol Methyltransferases SMT1, SMT2, and SMT3 Influence Arabidopsis Development through Nonbrassinosteroid Products

Author:

Carland Francine1,Fujioka Shozo1,Nelson Timothy1

Affiliation:

1. Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520 (F.C., T.N.); and RIKEN Advanced Science Institute, Wako-shi, Saitama 351–0198, Japan (S.F.)

Abstract

AbstractPlant sterols are structural components of cell membranes that provide rigidity, permeability, and regional identity to membranes. Sterols are also the precursors to the brassinosteroid signaling molecules. Evidence is accumulating that specific sterols have roles in pattern formation during development. COTYLEDON VASCULAR PATTERNING1 (CVP1) encodes C-24 STEROL METHYLTRANSFERASE2 (SMT2), one of three SMTs in Arabidopsis (Arabidopsis thaliana). SMT2 and SMT3, which also encodes a C-24 SMT, catalyze the reaction that distinguishes the synthesis of structural sterols from signaling brassinosteroid derivatives and are highly regulated. The deficiency of SMT2 in the cvp1 mutant results in moderate developmental defects, including aberrant cotyledon vein patterning, serrated floral organs, and reduced stature, but plants are viable, suggesting that SMT3 activity can substitute for the loss of SMT2. To test the distinct developmental roles of SMT2 and SMT3, we identified a transcript null smt3 mutant. Although smt3 single mutants appear wild type, cvp1 smt3 double mutants show enhanced defects relative to cvp1 mutants, such as discontinuous cotyledon vein pattern, and produce novel phenotypes, including defective root growth, loss of apical dominance, sterility, and homeotic floral transformations. These phenotypes are correlated with major alterations in the profiles of specific sterols but without significant alterations to brassinosteroid profiles. The alterations to sterol profiles in cvp1 mutants affect auxin response, demonstrated by weak auxin insensitivity, enhanced axr1 auxin resistance, ectopically expressed DR5:β-glucuronidase in developing embryos, and defective response to auxin-inhibited PIN2-green fluorescent protein endocytosis. We discuss the developmental roles of sterols implied by these results.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3