Optimizing Automated Gas Turbine Fault Detection Using Statistical Pattern Recognition

Author:

Loukis E.1,Mathioudakis K.1,Papailiou K.1

Affiliation:

1. Laboratory of Thermal Turbomachines, National Technical University of Athens, Athens, Greece

Abstract

A method enabling the automated diagnosis of gas turbine compressor blade faults, based on the principles of statistical pattern recognition, is initially presented. The decision making is based on the derivation of spectral patterns from dynamic measurement data and then the calculation of discriminants with respect to reference spectral patterns of the faults while it takes into account their statistical properties. A method of optimizing the selection of discriminants using dynamic measurement data is also presented. A few scalar discriminants are derived, in such a way that the maximum available discrimination potential is exploited. In this way the success rate of automated decision making is further improved, while the need for intuitive discriminant selection is eliminated. The effectiveness of the proposed methods is demonstrated by application to data coming from an industrial gas turbine while extension to other aspects of fault diagnosis is discussed.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3