Using Ensemble Random Forests for the extraction and exploitation of knowledge on gas turbine blading faults identification
Author:
Publisher
Informa UK Limited
Subject
General Medicine
Link
http://link.springer.com/content/pdf/10.1057/ori.2011.15.pdf
Reference36 articles.
1. Amit, Y. and Geman, D. (1997) Shape quantization and recognition with randomized trees. Neural Computation 9: 1545–1588.
2. Angelakis, C., Loukis, E., Pouliezos, A. and Stavrakakis, G. (2001) A neural network based method for gas turbine blading fault diagnosis. International Journal of Modelling and Simulation 21 (1): 51–60.
3. Aretakis, N. and Mathioudakis, K. (1998) Classification of radial compressor faults using pattern-recognition techniques. Control Engineering Practice 6: 1217–1223.
4. Aretakis, N., Mathioudakis, K. and Stamatis, A. (2004) Identification of sensor faults on turbofan engines using pattern recognition techniques. Control Engineering Practice 12: 827–836.
5. Breese, J.S., Horvitz, E.J., Peot, M.A., Gay, R. and Quentin, G.H. (1992) Automated Decision-analytic Diagnosis of Thermal Performance in Gas Turbines. ASME Paper no. 92-GT-399.
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Feature selection and feature learning in machine learning applications for gas turbines: A review;Engineering Applications of Artificial Intelligence;2023-01
2. Finite Element Calculation of the Limiting Pressure for Rupture of Capsules with an Active Substance in the Crack Detection System of Gas Turbine Blades;Software Engineering Research in System Science;2023
3. Classification of the gas path erosion level of the insulated stage of the axial compressor;Energy Systems;2022-12-20
4. Fault detection and isolation of gas turbine: Hierarchical classification and confidence rate computation;Journal of the Franklin Institute;2022-11
5. Machine-Learning-Based Condition Assessment of Gas Turbines—A Review;Energies;2021-12-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3