1. Годовой отчет ПАО «Газпром» за 2020 год [Электронный ресурс]. URL: https://www.gazprom.ru/f/posts/57/982072/gazprom-annual-report-2020-ru.pdf, PJSC Gazprom. (2020). Godovoy otchet PAO «Gazprom» za 2020 god [Annual Report 2020]. https://www.gazprom.ru/f/posts/57/982072/gazprom-annual-report-2020-ru.pdf
2. Burnes D., Kurz R. Performance degradation effects in modern industrial gas turbines // Proceedings of Zurich 2018 Global Power and Propulsion Forum. Том. 124. Zurich: GPPF, 2018. C. 10. URL: https://gpps.global/wp-content/uploads/2021/01/GPPS-Zurich18-0019.pdf, Burnes, D. & Kurz, R. (2018). Performance degradation effects in modern industrial gas turbines. In Proc. of Zurich 2018 Global Power and Propulsion Forum (p. 10). GPPF. https://gpps.global/wp-content/uploads/2021/01/GPPS-Zurich18-0019.pdf
3. Sallee G.P. Performance deterioration based on existing (historical) data. Cleveland: NASA Lewis Research Center, 1978. 225 с. URL: https://ntrs.nasa.gov/api/citations/19800013837/downloads/19800013837.pdf, Sallee, G.P. (1978). Performance deterioration based on existing (historical) data. NASA Lewis Research Center. https://ntrs.nasa.gov/citations/19800013837
4. Automated Defect Detection and Decision-Support in Gas Turbine Blade Inspection / J. Aust, S. Shankland, D. Pons et al. // Aerospace. 2021. Том. 8, № 2. C. 30., Aust, J., Shankland, S., Pons, D., Mukundan, R., & Mitrovic, A. (2021). Automated Defect Detection and Decision-Support in Gas Turbine Blade Inspection. Aerospace, 8(2), 30. https://doi.org/10.3390/aerospace8020030
5. Maragoudakis M., Loukis E. Using Ensemble Random Forests for the extraction and exploitation of knowledge on gas turbine blading faults identification // OR Insight. 2012. Т. 25, № 2. С. 80–104., Maragoudakis, M., & Loukis, E. (2012). Using Ensemble Random Forests for the extraction and exploitation of knowledge on gas turbine blading faults identification. OR Insight, 25(2), 80-104. https://doi.org/10.1057/ori.2011.15