Classification of the gas path erosion level of the insulated stage of the axial compressor

Author:

Blinov Vitalii1,Deryabin Gleb1,Zubkov Ilya1

Affiliation:

1. Ural Federal University named First President of Russia B. Yeltsin

Abstract

Erosive wear of the parts of the gas path of an axial compressor of a gas turbine is a common reason for premature decommissioning of equipment. The creation of an advanced diagnostic system, which will allow determining the level of blade erosion according to standard parameters without the inspection or disassembly, is topical for Russian gas transmission enterprises. The paper presents preliminary results of applying machine learning methods to solve such a problem for an isolated stage of an axial compressor. The verified results of numerical simulation of the air flow in the stage were used as initial data. The degree of erosion was set as the ratio of the chord of the eroded blade to the chord of the new blade in the peripheral section. The same parameter was the target for machine learning models. Sets of local and integral parameters of the numerical calculation were used as parameters. As a result of the primary study, the random forest model showed the best results when using all available parameters and the parameters with the highest correlation. Conclusions are formulated about the applicability of machine learning methods for creating a model for assessing the degree of erosion. The development of the work is connected with the creation of a model for predicting the technical condition of the flow path of the entire compressor.

Publisher

BSTU named after V.G. Shukhov

Reference15 articles.

1. Годовой отчет ПАО «Газпром» за 2020 год [Электронный ресурс]. URL: https://www.gazprom.ru/f/posts/57/982072/gazprom-annual-report-2020-ru.pdf, PJSC Gazprom. (2020). Godovoy otchet PAO «Gazprom» za 2020 god [Annual Report 2020]. https://www.gazprom.ru/f/posts/57/982072/gazprom-annual-report-2020-ru.pdf

2. Burnes D., Kurz R. Performance degradation effects in modern industrial gas turbines // Proceedings of Zurich 2018 Global Power and Propulsion Forum. Том. 124. Zurich: GPPF, 2018. C. 10. URL: https://gpps.global/wp-content/uploads/2021/01/GPPS-Zurich18-0019.pdf, Burnes, D. & Kurz, R. (2018). Performance degradation effects in modern industrial gas turbines. In Proc. of Zurich 2018 Global Power and Propulsion Forum (p. 10). GPPF. https://gpps.global/wp-content/uploads/2021/01/GPPS-Zurich18-0019.pdf

3. Sallee G.P. Performance deterioration based on existing (historical) data. Cleveland: NASA Lewis Research Center, 1978. 225 с. URL: https://ntrs.nasa.gov/api/citations/19800013837/downloads/19800013837.pdf, Sallee, G.P. (1978). Performance deterioration based on existing (historical) data. NASA Lewis Research Center. https://ntrs.nasa.gov/citations/19800013837

4. Automated Defect Detection and Decision-Support in Gas Turbine Blade Inspection / J. Aust, S. Shankland, D. Pons et al. // Aerospace. 2021. Том. 8, № 2. C. 30., Aust, J., Shankland, S., Pons, D., Mukundan, R., & Mitrovic, A. (2021). Automated Defect Detection and Decision-Support in Gas Turbine Blade Inspection. Aerospace, 8(2), 30. https://doi.org/10.3390/aerospace8020030

5. Maragoudakis M., Loukis E. Using Ensemble Random Forests for the extraction and exploitation of knowledge on gas turbine blading faults identification // OR Insight. 2012. Т. 25, № 2. С. 80–104., Maragoudakis, M., & Loukis, E. (2012). Using Ensemble Random Forests for the extraction and exploitation of knowledge on gas turbine blading faults identification. OR Insight, 25(2), 80-104. https://doi.org/10.1057/ori.2011.15

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3