Start-Up Optimization of Combined Cycle Power Plants: A Field Test in a Commercial Power Plant

Author:

Yoshida Yasuhiro1,Yoshida Takuya1,Enomoto Yuki2,Osaki Nobuhiro2,Nagahama Yoshito2,Tsuge Yoshifumi3

Affiliation:

1. Research & Development Group, Hitachi, Ltd., 7-2-1 Omika-cho, Hitachi, Ibaraki 319-1221, Japan e-mail:

2. Steam Turbine Products Headquarters, Mitsubishi Hitachi Power Systems, Ltd., 3-3-1 Minatomirai, Nishi-ku, Yokohama 220-8401, Japan e-mail:

3. Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan e-mail:

Abstract

Requirements for the start-up operations of gas turbine combined cycle (GTCC) power plants have become more diverse and now include such items as reduced start-up time, life consumption, and fuel gas consumption. In this paper, an optimization method is developed to solve these multi-objective problems. The method obtains optimized start-up curves by iterating the search for the optimal combination of the start-up parameter values and the evaluation of multiple objective functions. The start-up curves generated by this method were found to converge near the Pareto-front representing the best trade-off between the fuel gas consumption of the gas turbine (GT) and thermal stress in the steam turbine (ST) rotor which are defined as the objective functions. To demonstrate the effectiveness of the developed method, field tests were performed in a commercial power plant. As a result, the fuel gas consumption of HOT start-up was reduced by 22.8% compared with the past operation data. From this result, the developed method was shown to be capable of optimizing the start-up process for GTCC power plants.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3