Rotor Life Prediction and Improvement for Steam Turbines Under Cyclic Operation

Author:

Checcacci Damaso1,Cosi Lorenzo1,Sah Sanjay Kumar2

Affiliation:

1. GE Oil & Gas, Florence, Italy

2. GE Oil & Gas, Bangalore, KA, India

Abstract

The evolution of the energy market is leading to a general increase in demand for cyclic operation and rapid startup capability for steam turbines utilized in power utility plants. As a consequence, turbine manufactures must optimize designs to minimize transient stress and make available to plant operators the necessary understanding of the impact of operating conditions on parts life. In addition, if continuous duty operation is not economical for an existing plant, operators considering switching to the cyclic mode need to take into account the cost associated with reduced maintenance intervals and parts replacement. This paper presents the methodologies applied to assess and optimize steam turbine rotor life. The discussion stems from the case analysis of a 60 MW steam turbine that was operated almost uninterrupted for 10 years in a combined cycle plant and was then expected to switch to cyclic operation with approx 250 startups/year. The effects of different rotor geometries on transient thermal stress/strain conditions are presented along with the consequences of startup sequence modifications for rotor life vs. on-line time. The discussion is supported by modeling details and results from transient thermomechanical FEM analyses. The possibility of a simplified approach in the form of approximate models for the analysis of such behavior on a project basis is also addressed.

Publisher

ASMEDC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3