Experimental Investigation of Mode Shape Sensitivity of an Oscillating Low-Pressure Turbine Cascade at Design and Off-Design Conditions

Author:

Vogt Damian M.1,Fransson Torsten H.1

Affiliation:

1. Chairs of Heat and Power Technology, Royal Institute of Technology, S-100 44 Stockholm, Sweden

Abstract

The effect of negative incidence operation on mode shape sensitivity of an oscillating low-pressure turbine rotor blade row has been studied experimentally. An annular sector cascade has been employed in which the middle blade has been made oscillating in controlled three-dimensional rigid-body modes. Unsteady blade surface pressure data were acquired at midspan on the oscillating blade and two pairs of nonoscillating neighbor blades and reduced to aeroelastic stability data. The test program covered variations in reduced frequency, flow velocity, and inflow incidence; at each operating point, a set of three orthogonal modes was tested such as to allow for generation of stability plots by mode recombination. At nominal incidence, it has been found that increasing reduced frequency has a stabilizing effect on all modes. The analysis of mode shape sensitivity yielded that the most stable modes are of bending type with axial to chordwise character, whereas high sensitivity has been found for torsion-dominated modes. Negative incidence operation caused the flow to separate on the fore pressure side. This separation was found to have a destabilizing effect on bending modes of chordwise character, whereas an increase in stability could be noted for bending modes of edgewise character. Variations of stability parameter with inflow incidence have hereby found being largely linear within the range of conditions tested. For torsion-dominated modes, the influence on aeroelastic stability was close to neutral.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference15 articles.

1. Aeroelasticity in Turbomachines—Comparison of Theoretical and Experimental Results;Bölcs

2. Unsteady Gapwise Periodicity of Oscillating Cascaded Airfoils;Carta;ASME J. Eng. Power

3. Oscillating Cascade Aerodynamics by an Experimental Influence Coefficient Technique;Buffum;J. Propul. Power

4. Oscillating Cascade Aerodynamics at Large Mean Incidence;Buffum;ASME J. Turbomach.

5. Three-Dimensional Unsteady Flow for an Oscillating Turbine Blade and the Influence of Tip Leakage;Bell;ASME J. Turbomach.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3