Three-Dimensional Unsteady Flow for an Oscillating Turbine Blade and the Influence of Tip Leakage

Author:

Bell D. L.1,He L.1

Affiliation:

1. School of Engineering, University of Durham, Durham, DH1 3LE, United Kingdom

Abstract

The results of two investigations, concerning the aerodynamic response of a turbine blade oscillating in a three-dimensional bending mode, are presented in this paper. The first is an experimental and computational study, designed to produce detailed three-dimensional test cases for aeroelastic applications and examine the ability of a three-dimensional time-marching Euler method to predict the relevant unsteady aerodynamics. Extensive blade surface unsteady pressure measurements were obtained over a range of reduced frequency from a test facility with clearly defined boundary conditions (Bell and He, 1997, ASME Paper No. 97-GT-105). The test data indicate a significant three-dimensional effect, whereby the amplitude of the unsteady pressure response at different spanwise locations is largely insensitive to the local bending amplitude. The computational results, which are the first to be supported by detailed three-dimensional test data, demonstrate the ability of the inviscid method to capture the three-dimensional behavior exhibited by the experimental measurements and a good level of quantitative agreement is achieved throughout the range of reduced frequency. Additional computational solutions, obtained through application of the strip methodology, reveal inadequacies in the conventional quasi-three-dimensional approach to the prediction of oscillating blade flows. The issue of linearity is also considered, and both experimental and computational results indicate a linear behavior of the unsteady aerodynamics. The second, an experimental investigation, addresses the influence of tip leakage upon the unsteady aerodynamic response of an oscillating turbine blade. Results are provided for three settings of tip clearance. The steady flow measurements show marked increases in the size and strength of the tip leakage vortex for the larger settings of tip clearance and deviations are present in the blade loading toward the tip section. The changes in tip clearance also caused distinct trends in the amplitude of the unsteady pressure at 90 percent span, which are observed to correspond with localized regions where the tip leakage flow had a discernible impact on the steady flow blade loading characteristic. The existence of these trends in the unsteady pressure response warrants further investigation into the influence of tip leakage on the local unsteady flow and aerodynamic damping. [S0889-504X(00)01101-6]

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3