Dynamic Friction Measurements at Sliding Velocities Representative of High-Speed Machining Processes

Author:

Espinosa H. D.1,Patanella A. J.1,Fischer M.1

Affiliation:

1. Purdue University, 1282 Grissom Hall, West Lafayette, IN 47907-1282

Abstract

Understanding high speed machining processes requires knowledge of the dynamic friction response at the tool-workpiece interface, the high strain rate response of the workpiece material and its fracture mechanisms. In this paper, a novel experimental technique, consisting in the independent application of an axial static load and a dynamic torque, is used to investigate time resolved dynamic friction. Shear stress wave propagation along an input bar, pressing statically against an output bar, is analyzed. The quasi-static and kinetic friction coefficients of Ti-6Al-4V sliding against 1080 Steel, Al 6061-T6 sliding against 1080 Steel, and Al 6061-T6 sliding against Al 7075-T6, with various surface characteristics, are investigated. Sliding velocities up to 6.9 m/s are achieved. Surface roughness is varied to understand its role on the frictional response of the sliding interfaces. The dependence of friction coefficient on material strain-rate sensitivity is also assessed. Measured friction coefficients compared well with values reported in the literature using other experimental techniques. The experimental methodology discussed in this article provides a robust method for direct measurement of the quasi-static and dynamic friction coefficients representative of high-speed machining, metal-forming and ballistic penetration processes. [S0742-4787(00)01304-7]

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3