On the Catastrophic Shear Instability in High-Speed Machining of an AISI 4340 Steel

Author:

Komanduri R.1,Schroeder T.2,Hazra J.3,von Turkovich B. F.4,Flom D. G.5

Affiliation:

1. Corporate Research & Development, General Electric Co., Schenectady, N.Y. 12301

2. Mechanical Systems Research, Carboloy Systems Department, General Electric Co., Detroit, Mich.

3. Turning Products, Carboloy Systems Department, General Electric Co., Detroit, Mich.

4. Mech. Engg. Dept., The University of Vermont, Burlington, Ver. 05405

5. Advanced Machining & Wear Control Program, Corporate Research & Development, General Electric Co., Schenectady, N.Y. 12301

Abstract

An AISI 4340 Steel (325 BHN) was machined at various speeds up to 2500 m/min (8000 SFPM). Longitudinal midsections of the chips were examined metallurgically to delineate the differences in the chip formation characteristics at various speeds. Chips were found to be continuous at 30 to 60 m/min (100 to 200 SFPM) but discontinuous below this speed. Instabilities in the cutting process, leading to different types of cyclic chip formations, were observed at cutting speeds above 60 m/min (200 SFPM). Fully developed catastrophic shear bands separated by large areas (segments) of relatively less deformed material, similar to that when machining titanium alloys, were observed in the chips at cutting speeds above 275 m/min (800 SFPM). The intense shear bands between the segments appeared to have formed subsequent to the localized intense deformation of the segment in the primary shear zone. As the cutting speed increases, the extent of contact between the segments is found to decrease rapidly. At speeds of 1000 m/min (3200 SFPM) and above, due to rapid intense, localized shear between the segments, these segments were found to separate completely as isolated segments instead of being held intact as a long chip. The speed at which this decohesion occurs was found to depend upon the metallurgical state of the steel machined and its hardness. As in the case of machining titanium alloys, the deformation of the chip as it slides on the tool face, i.e., “secondary shear zone,” appeared to be negligible when machining this AISI 4340 steel at high speed. Based on the metallurgical study of the chip and the similarities of machining this material at high speed and that of titanium alloys at normal speed, a cyclic phenomenon in the primary shear zone is identified as the source of instability responsible for the large-scale heterogeneity and a mechanism of chip formation when machining AISI 4340 steel at high speed is proposed.

Publisher

ASME International

Subject

General Medicine

Cited by 165 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3