Impact of Dry and Cryogenic Cutting Medium on Shear Angle and Chip Morphology in High-speed Machining of Titanium Alloy (Ti-6Al-4V)

Author:

Hassan Adeel,Khan Muhammad Ali,Younas Muhammad,Jaffery Syed Huasin Imran,Khan Mushtaq,Ahmed Naveed,Awang Mokhtar

Abstract

Ti-6Al-4V, a titanium alloy, is widely employed in various engineering sectors due to its attractive combination of strong corrosion resistance and specific strength. However, titanium alloys frequently result in serrated chips, which present considerable machinability issues compared to other materials. The cutting medium plays a vital role in the chip formation mechanism, further affecting the machined part integrity and thermo-mechanical properties. Chip morphological parameters such as shear angle, compression ratio, and segmentation degree are essential aspects of estimating machined part surface roughness, tool wear, cutting forces, and energy consumption. Therefore, it is important to understand the entire mechanism of chip formation in terms of chip morphology in high-speed cutting. This fundamental research aims to analyze and compare the shear angle model and chip formation of titanium alloy Ti-6Al-4V for cutting speeds ranging from 50 m/min to 150 m/min and feed rates ranging from 0.12 mm/rev to 0.24 mm/rev under dry and cryogenic cutting environments. Single-point turning experiments were conducted on Ti-6Al-4V workpieces with uncoated tungsten carbide inserts (without chip breakers), which are advantageous for heat transfer. After the chip analysis, it was observed that the shear angle obtained practically with model-4 is the most appropriate model for shear angle calculation, and the cryogenic cutting medium is suitable for Ti-6Al-4V machining. At the feed rate of 0.12-0.24 mm/rev and cutting speed of 50-150 m/min, the shear angle in dry-medium machining ranges from 32° to 42°, while in cryogenic medium machining, it ranges from 34.6° to 44.6°. Overall, a larger shear angle has been observed in cryogenic turning compared to dry turning, which is advantageous for reduced cutting forces owing to a lesser shear plane. The tool-chip contact length, which is the intimate contact between the tool face and chip surface, significantly decreases under cryogenic media. A smaller tool-chip contact length results in an elevated shear angle, which improves process sustainability and economy during cryogenic turning, as described.

Publisher

Universiti Malaysia Pahang Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3