Effects of Non-Uniform Combustor Exit Flow on Turbine Aerodynamics

Author:

Pyliouras Stavros1,Schiffer Heinz-Peter2,Janke Erik3,Willer Lars3

Affiliation:

1. Siemens AG, Muelheim an der Ruhr, Germany

2. Technische Universitaet Darmstadt, Darmstadt, Hessen, Germany

3. Rolls-Royce Deutschland, Blankenfelde-Mahlow, Brandenburg, Germany

Abstract

Very-low NOx combustion concepts require a high swirl number of the flow in the combustion chamber to allow for lean burn combustion. This article deals with the influence of the resulting combustor exit swirl on the turbine aerodynamics of the first stage. This investigation is based on numerical simulations. According to the literature research additional insight into combustor-turbine interaction is achieved by taking into account a fully two dimensional inlet boundary condition. Up to now published results on combustor-turbine interaction were mostly restricted to the inhomogeneous temperature distribution at the turbine inlet. The investigations are carried out on a real engine geometry — the E3E Core 3/2 — a research project of Rolls-Royce Deutschland on lean combustion. Calculations are conducted by means of the Rolls-Royce plc code Hydra. The swirled inlet boundary condition is further scaled to test rig conditions to check for the transferability between the test rig and the real engine geometry. The results show a significant impact of the inhomogeneous turbine inflow on the stage efficiency and the thermal load. The optimization potential due to the clocking position of the combustor swirl is analyzed. The impact on the secondary flow mechanisms is analyzed with a novel visualization technique. A frequency spectrum analysis is carried out to investigate the effects of the 2D inlet boundary condition on the rotor row.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3