A New Experimental Approach for Heat Transfer Coefficient and Adiabatic Wall Temperature Measurements on a Nozzle Guide Vane With Inlet Temperature Distortions

Author:

Bacci Tommaso1,Picchi Alessio1,Facchini Bruno1,Cubeda Simone2

Affiliation:

1. DIEF, Department of Industrial Engineering, University of Florence, Florence 50139, Italy

2. Baker Hughes, Florence 50127, Italy

Abstract

Abstract Modern gas turbines lean combustors allow to limit NOx pollutant emissions by controlling the flame temperature, while maintaining high turbine inlet temperatures. On the other hand, their adoption presents other challenges, especially concerning the combustor–turbine interaction. Turbine inlet conditions are generally characterized by severe temperature distortions and swirl degree, which, in turn, is responsible for very high turbulence intensities. Several past studies have focused on the description of the effects of these phenomena on the behavior of the high pressure stages of the turbine, both considering them as separated aspects, and, in very recent years, accounting for their combined impact. Nevertheless, very limited experimental results are available when it comes to evaluate the heat transfer coefficient (HTC) on the nozzle guide vane (NGV) external surface, since relevant temperature distortions present a severe challenge for the commonly adopted measurement techniques. The work presented in this paper was carried out on a non-reactive, annular, three-sector test rig, made by a combustor simulator and a NGV cascade. Making use of three real hardware burners of a Baker Hughes heavy-duty gas turbine, operated in similitude conditions, it can reproduce a representative swirling flow, with temperature distortions at the combustor–turbine interface plane. This test apparatus was exploited to develop an experimental approach to retrieve reliable HTC and adiabatic wall temperature distributions simultaneously, in order to overcome the known limitations imposed by temperature gradients on state-of-the-art methods for HTC calculation from transient tests. A non-cooled mockup of a NGV doublet, manufactured using low thermal diffusivity plastic material, was used for the tests, carried out using infra-red thermography with a transient approach. In the authors’ knowledge, this presents the first experimental attempt of measuring a NGV HTC in the presence of relevant temperature distortions and swirl.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3