Developments in Hot-Streak Simulators for Turbine Testing

Author:

Povey Thomas1,Qureshi Imran1

Affiliation:

1. Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK

Abstract

The importance of understanding the impact of hot-streaks, and temperature distortion in general, on the high pressure turbine is widely appreciated, although it is still generally the case that turbines are designed for uniform inlet temperature—often the predicted peak gas temperature. This is because there is an insufficiency of reliable experimental data both from operating combustors and from rotating turbine experiments in which a combustor representative inlet temperature profile has accurately been simulated. There is increasing interest, therefore, in experiments that attempt to address this deficiency. Combustor (hot-streak) simulators have been implemented in six rotating turbine test facilities for the study of the effects on turbine life, heat transfer, aerodynamics, blade forcing, and efficiency. Three methods have been used to simulate the temperature profile: (a) the use of foreign gas to simulate the density gradients that arise due to temperature differences, (b) heat exchanger temperature distortion generators, and (c) cold gas injection temperature distortion generators. Since 2004 three significant new temperature distortion generators have been commissioned, and this points to the current interest in the field. The three new distortion generators are very different in design. The generator designs are reviewed, and the temperature profiles that were measured are compared in the context of the available data from combustors, which are also collected. A universally accepted terminology for referring to and quantifying temperature distortion in turbines has so far not developed, and this has led to a certain amount of confusion regarding definitions and terminology, both of which have proliferated. A simple means of comparing profiles is adopted in the paper and is a possible candidate for future use. New whole-field combustor measurements are presented, and the design of an advanced simulator, which has recently been commissioned to simulate both radial and circumferential temperature nonuniformity profiles in the QinetiQ/Oxford Isentropic Light Piston Turbine Test Facility, is presented.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3