Investigation of a Novel Secondary Flow Feature in a Turbine Cascade With End Wall Profiling

Author:

Ingram Grant1,Gregory-Smith David1,Harvey Neil2

Affiliation:

1. School of Engineering, University of Durham, South Road, Durham DH1 3LE, UK

2. Rolls-Royce plc, Derby, DE24 8BJ UK

Abstract

A novel secondary flow feature, previously unreported for turbine blading as far as the authors are aware, has been discovered. It has been found that it is possible to separate part of the inlet boundary layer on the blade row end wall as it is being over-turned and rolled up into the passage vortex. This flow feature has been discovered during a continuing investigation into the aerodynamic effects of non-axisymmetric end wall profiling. Previous work, using the low speed linear cascade at Durham University, has shown the potential of end wall profiling for reducing secondary losses. The latest study, the results of which are described here, was undertaken to determine the limits of what end wall profiling can achieve. The flow has been investigated in detail with pressure probe traversing and surface flow visualization. This has found that the inlet boundary locally separates, on the early suction side of the passage, generating significant extra loss which feeds directly into the core of the passage vortex. The presence of this new feature gives rise to the unexpected result that the secondary flow, as determined by the exit flow angle deviations and levels of secondary kinetic energy, can be reduced while at the same time the loss is increased. CFD was found to calculate the secondary flows moderately well compared with measurements. However, CFD did not predict this new feature, nor the increase in loss it caused. It is concluded that the application of non-axisymmetric end wall profiling, although it has been shown to be highly beneficial, can give rise to adverse features that current CFD tools are unable to predict. Improvements to CFD capability are required in order to be able to avoid such features, and obtain the full potential of end wall profiling.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3