The Effect of End-Wall Profiling on Secondary Flow and Loss Development in a Turbine Cascade

Author:

Ingram Grant1,Gregory-Smith David1,Rose Martin2,Harvey Neil3,Brennan Graham3

Affiliation:

1. University of Durham, Durham, UK

2. Swiss Federal Institute of Technology, Zurich, Switzerland

3. Rolls-Royce plc, Derby, UK

Abstract

The potential for loss reduction by using non-axisymmetric end-wall profiling has been demonstrated in the so called “Durham” cascade (Hartland et al [1]) and in a turbine representative rig (Brennan et al [2] and Rose et al [3]). This paper aim to enhance the understanding of end-wall profiling. It describes detailed measurements from upstream to downstream through the Durham cascade. The measurements cover the profiled end-wall used by Hartland, a second generation end-wall design (Gregory-Smith et. al. [4]) and the planar reference case. Considerable effort has gone into refining the measurement technique used in the cascade and new results are presented for traverses downstream which capture more accurately the flow near the end-wall. These measurements show the development of loss and secondary flow throughout the blade row. It is shown that end-wall profiling has a dramatic effect on the flow patterns in the early part of the blade row which then translates to a loss reduction later in the blade row. Comparison with CFD results aids the understanding of the role of the reduced horseshoe vortex in this process.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3