Estimating Local Decision-Making Behavior in Complex Evolutionary Systems

Author:

Sha Zhenghui1,Panchal Jitesh H.2

Affiliation:

1. Graduate Research Assistant School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 e-mail:

2. Assistant Professor School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 e-mail:

Abstract

Research in systems engineering and design is increasingly focused on complex sociotechnical systems whose structures are not directly controlled by the designers, but evolve endogenously as a result of decisions and behaviors of self-directed entities. Examples of such systems include smart electric grids, Internet, smart transportation networks, and open source product development communities. To influence the structure and performance of such systems, it is crucial to understand the local decisions that result in observed system structures. This paper presents three approaches to estimate the local behaviors and preferences in complex evolutionary systems, modeled as networks, from its structure at different time steps. The first approach is based on the generalized preferential attachment model of network evolution. In the second approach, statistical regression-based models are used to estimate the local decision-making behaviors from consecutive snapshots of the system structure. In the third approach, the entities are modeled as rational decision-making agents who make linking decisions based on the maximization of their payoffs. Within the decision-centric framework, the multinomial logit choice model is adopted to estimate the preferences of decision-making nodes. The approaches are illustrated and compared using an example of the autonomous system (AS) level Internet. The approaches are generally applicable to a variety of complex systems that can be modeled as networks. The insights gained are expected to direct researchers in choosing the most applicable estimation approach to get the node-level behaviors in the context of different scenarios.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3