Quantifying the Importance of Solar Soft Costs: A New Method to Apply Sensitivity Analysis to a Value Function

Author:

Syal Sita M.1,MacDonald Erin F.1

Affiliation:

1. Mechanical Engineering, Stanford University, Stanford, CA 94305

Abstract

Abstract This paper presents a new approach to build a decision model for government funding agencies, such as the US Department of Energy (DOE) solar office, to evaluate solar research funding strategies. High solar project costs—including technology costs, such as modules, and soft costs, such as permitting—currently hinder many installations; project cost reduction could lead to a lower project levelized cost of energy (LCOE) and, in turn, higher installation rates. Government research funding is a crucial driver to solar industry growth and potential cost reduction; however, DOE solar funding has not historically aligned with the industry priorities for LCOE reduction. Solar technology has received significantly higher research funding from the DOE compared to soft costs. Increased research funding to soft cost programs could spur needed innovation and accelerate cost reduction for the industry. To this end, we build a cost model to calculate the LCOE of a utility-scale solar development using technology and soft costs and conduct a sensitivity analysis to quantify how the inputs influence the LCOE. Using these results, we develop a multi-attribute value function and evaluate six funding strategies as possible alternatives. We find the strategy based on current DOE allocations results in the lowest calculated value and the strategy that prioritizes soft cost results in the highest calculated value, suggesting alternative ways for the DOE solar office to prioritize research funding and potentially spur future cost reduction.

Funder

National Science Foundation

Michigan State University

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference67 articles.

1. BP Energy Outlook, 2019 Edition;BP,2019

2. What Is U.S. Electricity Generation by Energy Source?;U.S. Energy Information Administration,2019

3. Evaluating the Causes of Cost Reduction in Photovoltaic Modules;Kavlak;Energy Policy,2018

4. Expanding and Better Targeting U.S. Investment in Energy Innovation: An Analytical Approach

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3