Detailed Flow and Heat Transfer Analyses in a Rib-Roughened Trailing-Edge Cooling Cavity With Impingement

Author:

Xue Fei1,Taslim Mohammad E.2

Affiliation:

1. Mechanical and Industrial Engineering Department, Northeastern University, Boston, MA 02115

2. Mechanical and Industrial Engineering, Department, Northeastern University, Boston, MA 02115 e-mail:

Abstract

A rig, simulating two adjacent cooling cavities on the trailing side of an airfoil, made up of two trapezoidal channels is tested. Eleven crossover holes on the partition wall between the two channels create the jets. Two exit flow arrangements are investigated—(a) jets, after interaction with the target surface, are turned toward the target channel exit axially and (b) jets exit from a row of racetrack-shaped slots along the target channel. Flow measurements are reported for individual holes and heat transfer coefficients on the eleven target walls downstream the jets are measured using liquid crystals under steady-state conditions. Smooth as well as ribbed target surfaces with four rib angles are tested. Correlations are developed for mass flow rate through each crossover hole, varying the number of crossover holes. Heat transfer coefficient variations along the target channel are reported for a range of 5000–50,000 local jet Reynolds numbers. Major conclusions are: (1) Correlations are developed to successfully predict the air flow rate through each crossover hole for partition walls with six to eleven crossover holes, based on the pressure drop across the holes, (2) impingement heat transfer coefficient correlates well with local jet Reynolds number for both exit flow arrangements, and (3) case of target channel flow exiting from the channel end, at higher jet Reynolds numbers, produce higher heat transfer coefficients than those in the case of flow exiting through a row of slots along the target channel opposite to the crossover holes.

Publisher

ASME International

Subject

Mechanical Engineering

Reference27 articles.

1. Evaluation of Internal Heat-Transfer Coefficients for Impingement Cooled Turbine Blades;J. Aircr.,1969

2. Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions—Part I: Impingement Cooling Without Film Coolant Extraction;ASME J. Turbomach.,1990

3. Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions—Part II: Impingement Cooling With Film Coolant Extraction;ASME J. Turbomach.,1990

4. Chang, H., Zhang, D., and Huang, T., 1997, “Impingement Heat Transfer From Rib Roughened Surface Within Arrays of Circular Jet: The Effect of the Relative Position of the Jet Hole to the Ribs,” ASME Paper No. 97-GT-331.10.1115/97-GT-331

5. Impingement Cooling in Rotating Two-Pass Rectangular Channels With Ribbed Walls;J. Thermophys. Heat Transfer,1999

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3