Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions: Part I—Impingement Cooling Without Film Coolant Extraction

Author:

Bunker R. S.1,Metzger D. E.1

Affiliation:

1. Mechanical and Aerospace Engineering Department, Arizona State University, Tempe, AZ 85287

Abstract

An experimental study has been designed and performed to measure very localized internal heat transfer characteristics in large-scale models of turbine blade impingement-cooled leading edge regions. Cooling is provided by a single line of equally spaced multiple jets, aimed at the leading edge apex and exiting the leading edge region in the opposite or chordwise direction. Detailed two-dimensional local surface Nusselt number distributions have been obtained through the use of aerodynamically steady but thermally transient tests employing temperature-indicating coatings. The thin coatings are sprayed directly on the test surface and are observed during the transient with automated computer vision and data acquisition systems. A wide range of parameter combinations of interest in cooled airfoil practice are covered in the test matrix, including combinations of variations in jet Reynolds number, airfoil leading edge sharpness, jet pitch-to-diameter ratio, and jet nozzle-to-apex travel distance. Measured local Nusselt numbers at each chordwise location back from the stagnation line have been used to calculate both the spanwise average Nusselt number and spanwise Nusselt number gradient as functions of chordwise position. Results indicate general increases in heat transfer with approximately the 0.6 power of jet Reynolds number, increases in heat transfer with decreasing leading edge sharpness as well as with decreasing nozzle-to-apex distance, and increases in spanwise average heat transfer with decreasing jet pitch-to-diameter ratio. The latter increases are accompanied by increases in the spanwise gradient of the heat transfer coefficient. Comparison with available prior results of much coarser spatial resolution shows good agreement and establishes confidence in the use of the results for design purposes and as baseline results for comparison with subsequent experiments involving film cooling bleed.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3