Influence of Buoyancy and Inter-Surface Radiation on Confined Jet Impingement Cooling of a Semi-Cylindrical Concave Plate

Author:

Sarper Bugra1

Affiliation:

1. Department of Mechanical Engineering, Tarsus University , Mersin 33400, Turkey

Abstract

Abstract In this article, the confined jet impingement cooling of a semicylindrical concave plate is analyzed numerically. The finite volume approach is applied to two-dimensional numerical simulations in the transient regime. Air is employed as the working fluid and is regarded as nonparticipant for radiation. The investigation is done for different jet Reynolds numbers (Rej) ranging from 100 to 1000, as the Richardson number (Ri) corresponding to this interval ranges between 0.1 and 10. For any Richardson number, the modified Grashof number (Gr*) is fixed at 105. When analyzing the impact of intersurface radiation between the target plate and confined surfaces on the overall cooling performance, three emissivity values (ε= 0.05, 0.5, and 0.95) are taken into consideration. Additionally, simulations are done for the pure convective heat transfer, ignoring intersurface radiation (ε= 0.0). The influence of surface emissivity and the Richardson number on velocity, temperature, and pressure distribution in the flow domain, local dimensionless temperature (θ) alterations on the target plate and confined walls, alterations in convective (Nuc), radiative (Nur), overall Nusselt numbers (Nuovr), pressure coefficient (Cp), and ratio of radiative Nusselt number to overall Nusselt number (Nur/Nuovr) on the target plate are highlighted. The findings demonstrate that surface emissivity has a significant influence on thermal and hydrodynamic boundary layer formation, buoyancy induced flow and heat transfer, and the proportion of intersurface radiation in overall heat transfer rises as the Richardson number and surface emissivity increase. At low Richardson numbers, the pressure in the stagnation region is greater than the atmospheric pressure. However, as the buoyancy effect increases, the pressure in the stagnation region falls below the atmospheric pressure and rises toward the exit.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3