Heat Transfer Analysis of a Novel Pressurized Air Receiver for Concentrated Solar Power via Combined Cycles

Author:

Hischier I.1,Hess D.1,Lipiński W.2,Modest M.3,Steinfeld A.4

Affiliation:

1. Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland

2. Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455

3. School of Engineering, University of California, Merced, CA 95343

4. Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland; Solar Technology Laboratory, Paul Scherrer Institute, Villigen 5232, Switzerland

Abstract

A novel design of a high-temperature pressurized solar air receiver for power generation via combined Brayton–Rankine cycles is proposed. It consists of an annular reticulate porous ceramic (RPC) bounded by two concentric cylinders. The inner cylinder, which serves as the solar absorber, has a cavity-type configuration and a small aperture for the access of concentrated solar radiation. Absorbed heat is transferred by conduction, radiation, and convection to the pressurized air flowing across the RPC. A 2D steady-state energy conservation equation coupling the three modes of heat transfer is formulated and solved by the finite volume technique and by applying the Rosseland diffusion, P1, and Monte Carlo radiation methods. Key results include the temperature distribution and thermal efficiency as a function of the geometrical and operational parameters. For a solar concentration ratio of 3000 suns, the outlet air temperature reaches 1000°C at 10 bars, yielding a thermal efficiency of 78%.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3