An Update on Solar Central Receiver Systems, Projects, and Technologies

Author:

Romero Manuel1,Buck Reiner2,Pacheco James E.3

Affiliation:

1. Centro de Investigaciones Energe´ticas, Medioambientales y Tecnolo´gicas, Avenida Complutense, 22, E 28040 Madrid, Spain

2. Deutsches Zentrum fu¨r Luft- und Raumfahrt, Institut fuer Technische Thermodynamik, Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany

3. Sandia National Laboratories, Solar Thermal Technology Department, PO Box 5800, M/S 0703, Albuquerque, NM 87185-0703

Abstract

Central Receiver Systems that use large heliostat fields and solar receivers located on top of a tower are now in the position to deploy the first generation of grid-connected commercial plants. The technical feasibility of the CRS power plants technology can be valued as sufficiently mature after the pioneering experience at the early 1980s of several pilot plants in the 0.5–10 MW power range and the subsequent improvement of key components like heliostats and solar receiver in many projects merging international collaboration during the past 15 years. Solar-only plants like Solar Tres and PS10 or hybrid schemes like SOLGAS, CONSOLAR, or SOLGATE are being developed and supply a portfolio of alternatives leading to the first scaling-up plants during the period 2000–2010. Those projects with still non-optimized small sizes of 10–15 MW are already revealing a dramatic reduction of costs versus previous feasibility studies and give the path for the formulation of a realistic milestone of achieving a LEC of $0.08/kWh by the year 2010 and penetrating initial competitive markets by 2015 with LECs between $0.04/kWh–$0.06/kWh.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference45 articles.

1. Becker, M., Macias, M., and Ajona, J. I., 1996, “Solar Thermal Power Stations,” The Future for Renewable Energy: Prospects and Directions, EUREC-Agency, ed., James&James Science Publishers, London, pp. 135–153.

2. Sizmann, R., 1991, “Solar Radiation Conversion.” Solar Power Plants, C. J. Winter, R. L. Sizmann, and L. L. Vant-Hull, eds., Springer-Verlag, Berlin, pp. 17–83.

3. Mancini, T. R., Kolb, G. J., and Prairie, M., 1997, “Solar Thermal Power,” Advances in Solar Energy: An Annual Review of Research and Development, 11, Karl W. Boer, ed., American Solar Energy Society, Boulder, CO, pp. 1–42.

4. Romero, M., Marcos, M. J., Te´llez, F. M., Blanco, M., Ferna´ndez, V., Baonza, F., and Berger, S., 2000, “Distributed Power from Solar Tower Systems: A MIUS Approach,” Sol. Energy, 67(4-6), pp. 249–264.

5. Kolb, G. J. , 1998, “Economic Evaluation of Solar-Only and Hybrid Power Towers Using Molten-Salt Technology,” Sol. Energy, 62(1), pp. 51–61.

Cited by 254 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3