Rigid-Compliant Hybrid Cellular Expansion Mechanisms With Motion Amplification and Superposition

Author:

Wang Tingwei1,Yu Jingjun1,Zhao Hongzhe1

Affiliation:

1. Beihang University Robotics Institute, , Beijing 100191 , China

Abstract

Abstract Motivated by heat dissipation, the rigid-compliant hybrid cellular expansion mechanisms with motion amplification and superposition are proposed in this paper. Compared with existing studies, the expansion mechanism is not only easy to realize the plane tessellation via cellular design due to its regular polygon structure but also has the ability of motion amplification and superposition due to its compliant displacement amplifier and rigid scissors. First, the scheme of expansion mechanisms, especially the working principle of motion amplification and superposition, is introduced. The configuration design of a family of expansion mechanisms is presented, including varying number of edges, concave/convex property, and inner/outer layout. Second, the constraint condition and analytical modeling of relations between output performances of expansion mechanisms and dimensional parameters are carried out. Third, the displacement amplification ratio of expansion mechanisms and output performances of several typical expansion mechanisms when they act as cells to tessellate a plane with a constrained area are analyzed. Finally, the output performances of expansion mechanisms are verified via the finite element analysis. The results show that proposed cellular expansion mechanisms are beneficial for realizing plane tessellation and offer motion amplification and superposition, which provide prospects in the field of mechanism design such as metamaterials.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3