ADVISE: Accelerating the Creation of Evidence Syntheses for Global Development using Natural Language Processing-supported Human-AI Collaboration

Author:

Edwards Kristen1,Song Binyang2,Porciello Jaron3,Engelbert Mark4,Huang Carolyn4,Ahmed Faez5

Affiliation:

1. 77 Massachusetts Ave Cambridge, MA 02139

2. 33 Massachusetts Ave Cambridge, MA 02139

3. University of Notre Dame South Bend, IN 46556-5603

4. 1111 19th Street, NW, Suite 700 DC, DC 20036

5. 33 Massachusetts Ave MA 02139 Cambridge, MA 02139

Abstract

Abstract When designing evidence-based policies and programs, decision-makers must distill key information from a vast and rapidly growing literature base. Identifying relevant literature from raw search results is time and resource intensive, and is often done by manual screening. In this study, we develop an AI agent based on a bidirectional encoder representations from transformers (BERT) model and incorporate it into a human team designing an evidence synthesis product for global development. We explore the effectiveness of the human-AI hybrid team in accelerating the evidence synthesis process. We further enhance the human-AI hybrid team through active learning (AL). Specifically, we explore different sampling strategies: random, least confidence (LC), and highest priority (HP) sampling, to study their influence on the collaborative screening process. Results show that incorporating the BERT-based AI agent can reduce the human screening effort by 68.5% compared to the case of no AI assistance, and by 16.8% compared to using the industry standard model for identifying 80% of all relevant documents. When we apply the HP sampling strategy, the human screening effort can be reduced even more: by 78% for identifying 80% of all relevant documents compared to no AI assistance. We apply the AL-enhanced human-AI hybrid teaming workflow in the design process of three evidence gap maps which are now published for USAID's use. These findings demonstrate how AI can accelerate the development of evidence synthesis products and promote timely evidence-based decision making in global development.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3